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The hydrodynamic stability of a pure liquid undergoing steady rapid evaporation 
at reduced pressure is examined using linear stability analysis. Results show that 
the rapidly evaporating liquid is unstable to local variations in evaporation rate, 
local surface depressions being produced by the force exerted on the surface by 
the rapidly departing vapour and sustained liquid flows being driven by the 
resultant shear exerted on the liquid surface by the vapour. The coupling of this 
‘differential vapour recoil ’ mechanism to the Marangoni effect is investigated 
and the importance of inertial heat transfer, fluid inertia and viscous dissipation 
at  the interface to system stability is resolved. 

1. Introduction 
Spontaneous convection in fluid-fluid systems driven by surface-tension 

variations and density stratification has been a subject of considerable interest 
in the past 20 years, for it is through such destabilizing mechanisms that the full 
utilization of otherwise stored potential energy can be accomplished. Numerous 
examples exist in which interfacial mass-transfer rates have been increased more 
than threefold by the onset of spontaneous convection (cf. Berg 1972; Beitel & 
Heideger 197 1). Similar examples of heat-transport enhancement in fluid systems 
have also been reported. 

In contrast, a third mechanism for inducing spontaneous convection, that of 
instability induced by differential vapour recoil, was f i s t  noted and correctly 
interpreted by Hickman in 1952 but has since attracted surprisingly little 
attention despite its dramatic effect on the evaporation of liquids at  pressures 
below 1 Ton. Hickman (1952) has shown that an increase as high as 20-fold in 
the liquid evaporation rate may be enjoyed if the interface is disrupted by 
differential vapour recoil. The onset of such convection appears as a sharp 
transition from a relatively quiescent evaporating liquid surface as the pressure 
above the liquid is decreased. Consequently it is often responsible for spasmodic 
fluctuations in pressure during the operation of condensation pumps and vacuum 
distillation processes which can render the apparatus inoperative or ultimately 
result in complete loss of valuable product. 

t Present address : Department of Chemical Engineering, University of Rochester, 
Rochester, New York 14627. 
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The influence of interfacial contamination on system behaviour is particularly 
important and has been qualitatively interpreted by Hickman (1952, 1972). 
Under certain circumstances the surface of the rapidly evaporating liquid sepa- 
rates into two distinct areas of interfacial activity (cf. figure l ,  plate l).  Surface 
motion in the 'torpid' area reflects the slow bulk movement of the liquid below 
while the surface of the 'working' area exhibits rapid small-scale movement 
and a substantially increased evaporation rate. This large difference in the rates 
of evaporation from the two adjacent regions is reflected in the difference in their 
surface elevations ( w 2 mm), caused by the difference in momentum transfer to 
the surface by the departing vapour. The existence of the schizoid surface appears 
to be due solely to the presence of surface-active contamination in the system. 
In fact, by carefully overflowing the interfacial layer of the torpid area to discard 
any interfacial contaminants, Hickman has shown that the schizoid surface 
transforms to one which is entirely 'working '. 

The object of the present paper is to assess the linear stability of a pure liquid 
undergoing steady rapid evaporation a t  reduced pressure. Included in the 
analysis are the effects of the discontinuities in both linear momentum and 
kinetic energy at  the fluid-fluid interface which accompany the phase change. 
In  addition, the relative importance of the ratio of convective to conductive heat 
transport to system stability is investigated and the coupling between the vapour 
recoil mechanism and the familiar. surface-tension destabilizing mechanism 
(Marangoni instability) is assessed. A later paper will present the effects of trace 
amounts of non-volatile surfactants on the linear stability of rapidly evaporating 
liquids. 

2. The quiescent system 
Consider steady evaporation of a pure liquid at reduced pressure. The liquid 

is infinite in lateral extent and unbounded from below, and the rate of evapora- 
tion from the liquid surface is proportional to the local surface temperature: 

where 7" is the steady mass rate of evaporation, E is the evaporation coefficient, 
R is the gas constant, M is the molecular weight of the liquid, PO is its vapour 
pressure at the surface temperature TI,, and Ps and Tg are the pressure and 
temperature of the gas phase above the liquid (cf. Maa 1967). 

Prior to the onset of interfacial instability, the surface temperature and eva- 
poration rate are assumed to be independent of surface position. In  general the 
bulk of the liquid will be circulating if not by mechanical agitation then by 
natural convection induced by density stratification. However, in the absence 
of instabilities driven by surface tension, a quiescent boundary layer may exist 
in the vicinity of the interface through which heat is transported by conduction 
only. The thickness of this boundary layer necessarily depends on the intensity 
of the bulk circulation. It is this interfacial region whose stability is to be 
analysed. 
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The evaporation rate is assumed to be steady. Thus there exists a net liquid 
flow upwards through the thermal boundary layer as well as a steady vapour 
flow away &om the interface. Because of its relative insignificance and for 
simplicity, the effect of this liquid flow on the stable temperature profile in the 
thermal boundary layer is ignored in the present analysis. Therefore, prior to  
the onset of interfacial convection the temperature profile in the thermal 
boundary layer is assumed to be linear, consistent with the assumption of a 
steadily evaporating liquid, while the liquid temperature outside the boundary 
layer is assumed to be constant. The use of a ‘ broken-line’ profile to characterize 
the temperature distribution in the liquid is not expected to restrict the applic- 
ability of the stability analysis (Brian & Ross 1972). This supposition is further 
supported by the close correspondence for long-wavelength disturbances be- 
tween the present analysis and that of Miller (1973) for moving-boundary in- 
stabilities, which incorporated the exact initial temperature profile. 

In  addition, the rate of cooling of the liquid surface by heat conduction in 
the vapour phase is assumed to be negligible compared with the heat removed 
by the phase change. Furthermore, all physical properties of the two fluid phases 
except surface tension and vapour pressure are assumed constant. In  particular, 
the destabilizing influence of an adverse density gradient in the boundary layer 
is ignored in the analysis. While density stratification should have a negligible 
effect on the stability of the thin thermal boundary layers ( <  1 mm) exposed 
in Hickman’s experiments, the buoyancy destabilizing mechanism (Rayleigh 
instability) will measurably decrease the stability of deeper layers and, there- 
fore, must be reckoned with to provide accurate stability predictions for such 
systems. 

Because mass must be conserved, the change in fluid density during evapora- 
tion results in a discontinuity in both the fluid velocity normal to the interface 
and the rate of transport of linear momentum across it. Momentum must also 
be conserved. Therefore the discontinuity in velocity results in a downward 
force on the interface (vapour recoil) which increases with evaporation rate and 
with an increase in the density ratio of the liquid and gas phase [cf. equation (3)]. 
Since the density of the gas phase is linearly proportional to the pressure, the 
magnitude and, thus, the importance of this vapour recoil force increase markedly 
as the pressure is reduced. 

3. Destabilizing mechanisms 
When the system is perturbed, it responds according to the equations of mass, 

momentum and energy conservation. Depending on the system properties, this 
response may carry it still further from the original unperturbed state. A dis- 
turbance in the form of a local increase in surface temperature, for example, will 
increase the local evaporation rate and decrease the local surface tension. The 
increase in evaporation rate produces a local increase in the normal force on the 
interface (vapour recoil). The result is a local depression or crater in the surface 
with slanted walls, which permits the departing vapour to shear the liquid 
surface and drag hot liquid up to the point of already higher temperature to 
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produce auto-amplification of the original disturbance. In  a similar manner, the 
induced gradient in surface tension will induce the flow of hot liquid up to the 
surface to increase further the local surface temperature and amplify the dis- 
turbance. 

Apart from the vapour-recoil and surface-tension mechanisms, fluid instability 
can also be produced by the effect of the deforming interface on the steady flow 
pattern near the surface. In  the vicinity of surface depressions, fluid streamlines 
converge in the liquid phase and diverge in the vapour phase to reflect variations 
in fluid inertia, which produce a local decrease in liquid pressure combined with 
a local increase in vapour-phase pressure a t  the interface. The result is a net 
downward force, which depresses the surface still further. If the steady evapora- 
tion rate is sufficiently high, this inertia mechanism is capable of overcoming the 
stabilizing effect of gravity on surface deflexions to produce convection even in 
the absence of lateral variations in evaporation rate. 

For disturbances of very short wavelength (i.e. less than one-tenth the thermal- 
boundary-layer thickness), the interconversion of viscous work and thermal 
energy becomes the major destabilizing factor in the system. Considerable point- 
wise variation in the slope of the interface accompanies any short-wavelength 
disturbance. Furthermore, high evaporation rates occur in the local surface 
depressions. Thus, in the vicinity of surface depressions fluid accelerations are 
high and viscous friction warms the surface liquid to sustain the locally high 
evaporation rate in the crater, while normal viscous forces further deform the 
interface. 

If the wavelength of the disturbance is long (i.e. more than 1000 times the 
thermal-boundary-layer thickness), expansion during phase change coupled 
with convective heat transfer will aid in the auto-amplification of the distur- 
bance. Local depressions in the interface cause local film thinning, which en- 
hances heat transport to the surface, increases the local evaporation rate and, 
therefore, causes more rapid removal of liquid from depressions than from surface 
elevations to amplify the original disturbance. The interpretation of this moving- 
boundary destabilizing mechanism is given by Miller (1973), who examined the 
linear stability of a fluid-fluid interface during phase change subject to the 
restriction that the interfacial temperature remains constant while the local 
rate of phase transformation is perturbed. Compared with the present analysis, 
this special case refers to a liquid with an infinite temperature coefficient of 
evaporation rate. Thus Miller’s analysis predicts a lower limit on the criteria for 
instability due to the moving-boundary mechanism in rapidly evaporating 
liquids. The present analysis expands Miller’s results to encompass the more 
realistic condition of a liquid whose evaporation rate depends on interfacial 
temperature. 

In  summary, five distinct mechanisms for initiating interfacial convection in 
rapidly evaporating liquids will be delineated by the analysis: (i) differential 
vapour recoil, (ii) fluid inertia, (iii) viscous dissipation, (iv) moving boundary 
and (v) surface tension. Prior to execution of the formal stability analysis, 
certain qualitative trends in the stability criteria may be anticipated. The 
mechanisms of differential vapour recoil, fluid inertia and viscous dissipation 
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will all be accentuated by a decrease in gas-phase pressure. For the vapour- 
recoil mechanism, a decrease in pressure enhances crater formation through an 
increase in the magnitude of local variations in recoil force. For the fluid-inertia 
and viscous-dissipation mechanisms, a decrease in pressure intensifies the effect 
of fluid inertia on lateral pressure fluctuations at the interface and increases 
local viscous heating through an increase in gas-phase velocity and velocity 
gradients a t  constant mass evaporation rate. 

If interfacial convection is to be induced by differential vapour recoil, by the 
fluid-inertia mechanism or by the viscous-dissipation mechanism, the interface 
must be deformable. Therefore a decrease in the surface tension will mean greater 
surface flexibility and a correspondingly greater propensity for convective in- 
stability. Furthermore, the existence of a vapour viscosity is essential if the 
departing vapour is to induce liquid flow by interfacial shear. Thus the larger 
the vapour viscosity the more unstable the system will be to differential vapour 
recoil. In  contrast, the likelihood of instability induced by local variations in 
surface tension will be reduced by an increase in vapour viscosity because the 
induced interfacial shear stress must generate circulation in the vapour phase as 
well as in the liquid. In  addition, while local increases in the evaporation rate at 
hot spots on the surface are crucial to the vapour-recoil mechanism to produce 
surface deformations, these local increases in evaporation rate also increase the 
local rate of interfacial cooling and diminish lateral temperature variations, which 
are vital to the surface-tension destabilizing mechanism. Thus some competition 
between the vapour-recoil mechanism and the surface-tension mechanism is 
anticipated in the following analysis. Finally, the action of gravity is to stabilize 
deflexions of the interface of moderate to long wavelength. Therefore gravita- 
tional stabilization will be significant to all but the viecous-dissipation destabi- 
lizing mechanism. 

4. Mathematical formulation 
The linear stability of the evaporating liquid is analysed in the usual manner 

by imparting to the quiescent system a small disturbance, exponential in time 
and periodic in the planform, spatial variables, but of arbitrary wavelength. 
The disturbance is then made to obey the conservation equations of mass, 
momentum and energy subject to the appropriate boundary conditions for the 
system. 

The heart of the present analysis lies in the specification of the boundary condi- 
tions at the fluid interface. The general equations describing conservation of 
mass, momentum and energy in the interfacial region as presented by Slattery 
(1967) are simplified following Scriven & Sternling (1964) and Smith (1966) for 
an initially flat interface perturbed infinitesimally from its equilibrium position. 
The co-ordinate system used in this development moves with the unperturbed 
interface, with the x co-ordinate normal to the interface and increasing into the 
vapour phase. 

For the quiescent system conservation of mass at  the interface requires that 
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where p is the mass density, W* is the unperturbed vertical component of fluid 
velocity, q-* is the unperturbed mass rate of evaporation, and the subscripts L 
and V refer to the liquid and vapour phases respectively. The discontinuity in 
fluid velocity which accompanies the change in fluid density during phase 
change results in a discontinuity in the rate of transport of linear momentum 
across the fluid interface. The difference between the rate of momentum transport 
away from the interface by the departing vapour and the rate of momentum 
transport towards the interface by the approaching liquid is equal to a dynamic 
pressure Pz - P$ exerted on the liquid surface, called the absolute vapour recoil 
force. The magnitude of this force is given by the following interfacial momentum 
balance : 

(3) 

where P* is the unperturbed fluid pressure. 
Finally, if heat conduction in the vapour phase is assumed to be negligible, 

the equation of energy conservation at the interface for the quiescent system 
becomes 

(4) 

where Avap is the latent heat of vaporization for the fluid, kL is the liquid thermal 
conductivity and T2 is the unperturbed liquid temperature. 

If the system variables are now perturbed an infinitesimal amount from their 
quiescent values, conservation of mass a t  the interface requires that 

( 5 )  PL wi- Pv wt. = (PL - Pv) dB’ldt, 

where B’ is the displacement of the interface from its equilibrium position, t is 
time and the primes denote the perturbations in the system variables. In  addi- 
tion, i t  can be shown that there is a definite relationship between the perturbation 
in evaporation rate f and the perturbation in the vertical component of velocity 
at the interface: 

Continuity of tangential velocity at the interface results in the following boun- 
dary condition with the aid of the continuity equation: 

where V;I is the surface divergence a2/ax2 + a2/8y2. 
The requirement that momentum be conserved at  the fluid interface results 

in both a normal and a tangential momentum balance at the interface for the 
perturbed system. The normal component of the interfacial momentum balance 
for this system is 

-g*V$,B‘=O, (8) 
Pv PL 

where CT* is the unperturbed value of the surface tension and p is the fluid vis- 
cosity. 

An equation representing the tangential component of the interfacial momen- 
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tum balance is obtained by taking the surface divergence of the interfacial 
momentum equation: 

where u‘ is the perturbation in surface tension. 
Finally, conservation of energy a t  the interface requires that 

LP; A1 IPv awt- PL ax 

8TI, 
7/’h,,+kL, + $q‘q*Z - - - -2q* e- - -- = 0. (10) 

Strictly, (5)-(10) are valid at the interface; i.e. at x = B’. For small surface 
deformations, however, it  is easily shown that (5)-( 7) remain unchanged if 
applied a t  x = 0. To modify (8) for application at z = 0, a Taylor series expansion 
of P’ must be employed about x = 0. The result is that 

[Pi - P;7Is4 = [Pi - ~ t , I , ,  - gB’(pL - p r ) ,  (11) 

where g is the gravitational acceleration. 
Equations (9) and (10) may be similarly modified by recognizing that 

[TLIzIjy = [Til2=,-/3B’ (12) 

and that Vq, U‘ = (aU/aT) [V& T’Js=B’, (13) 

where -/3 is the unperturbed temperature gradient in the thermal boundary 
layer and &/aT is the temperature coefficient of surface tension. 

The final form of the normal force balance applied at z = 0 is particularly 
interesting in that it reveals the distinguishing features of the destabilizing 
mechanisms in rapidly evaporating liquids. At z = 0 

[P;-PiI+%*11’[1- 1]+4[”x aw; -Pv,] aw; 
Pv PL 

+ g(p, -pv)  B’ - ~ “ V f 1  B’ = 0, (14) 

where positive terms represent downward forces and negative terms represent 
upward forces. For a local depression B’ < 0 while Of, B‘ > 0. Thus the fourth 
and fifth terms of (14) are both negative and reveal the stabilizing effects of 
gravity and surface tension as restoring forces in the system. However, the fist 
three terms in (14) are positive at  local depressions of the interface owing to  the 
associated increase in interfacial temperature and the local distortion of fluid 
streamlines. Thus these terms represent forces which tend to depress the inter- 
face still further and cause instability. In  particular, the first term represents the 
destabilizing effect of local variations in bulk phase pressure caused by variations 
in fluid inertia, the second term is the destabilizing force of differential vapour 
recoil, and the third term reflects the destabilizing influence of normal viscous 
forces, which are important to the viscous-dissipation mechanism. 
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Far from the interface all perturbations in velocity and temperature must 
approach zero: 

W ~ = a W ~ / a z = T ~ = O  as X + - C Q  (15) 

At the bottom boundary of the thermal boundary layer the liquid temperature 
T i  and the heat flux lcLaT;,laz must be continuous. 

The linearized equations of mass, momentum and energy conservation to- 
gether with the boundary conditions (5)-(lo), (15) and (16) completely specify 
the response of the system to infinitesimal perturbations. The general form of 
the velocity, temperature and pressure disturbances which satisfies these equa- 
tions is 

where y is the time growth constant, 9 ( z )  is the z-dependent part of the distur- 
bance and f (x, y) satisfies the two-dimensional wave equation 

V&f +ay = 0. 

The state of marginal stability is sought and requires that the real part of the 
time growth constant be zero. In  the present analysis only stationary modes of 
instability are considered. Therefore the imaginary part of y is also set equal to 
zero. For the present system, the assumption of 'exchange of stabilities' appears 
to be justified since neither a non-conservative force field nor a superposed 
stabilizing gradient of solute or surfactant is present to favour oscillatory 
modes of instability (Veronis 1965; McConaghy & Finlayson 1969; Palmer & 
Berg 1972). After non-dimensionalization and requiring that y = 0, the appro- 
priate equations of momentumand energyconservation whichdefine the neutrally 
stable state of the system become 

Equations (17) and (18) are the equations of momentum conservation for each 
phase, (19) and (20) derive from the curl of the vorticity equation for each phase, 
(21) and (22) are the divergence of the equation of momentum conservation for 
each phase, and (23a, b )  are those of energy conservation in the liquid. 
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Similarly the complete set of boundary conditions in dimensionless form is as 
follows. At 5 = 0, 

[NRENpRNCR( 1 - N i l ) ]  Wv - NH[TL - BI = 0, 

N,DWV-DWL+NRENpR(N,- 1 )  a2B = 0, 

(24) 

NpWL-NpWv= 0, (25)  

(26) 

(27) 

a2N,,(TL-B) +D2WL-D2WV+~2(WL- Wv) = 0, (28) 

As c-fco, Wv = DWV = 0. (3% (31)  

AS 5-f -00, (321434) 

Ate= - 1 ,  (351, (36) 

NcR(P'-Pv) +~NGR(DW,-DWL)-~NH(N~/NPR) (TL-B)-(a2+NBo) B = 0, 

NPRDTL-kWL[l + N B R p R E ( p p -  1)]/NRE+2NBR(DWL-NpDW~) = 0. (29) 

WL = OW, = TL = 0. 

both T, and DT, must be continuous. 

In  (17)-(36), 5 is the dimensionless vertical co-ordinate; D = d /dc ;  W ,  P and 
T are the Sj-dependent parts of the perturbations to the dimensionless vertical 
velocity component, pressure and temperature, respectively; B is the dimen- 
sionless amplitude of the interfacial displacement perturbation; and 01 is the 
wavenumber of the disturbance. The scaling factors for Q W,, WL, Pv, PL, TL 
and B are 6, KLpL/,uv6, KL/6, pLKL/62, ,uLKL/&2,  p6 and 6, respectively, where K~ 

is the thermal diffusivity of the liquid and 6 is the depth of the boundary layer. 
The dimensionless groups in the above equations are defined as follows: 

Marangoni number NllIA = - - - (Z) [ZLJ 
Crispation number XCR = p L  KL/g*6, 
Viscosity ratio Np = PLIPY, 
Density ratio Np = PLIPY, 

Reynolds number NRE = y*S/pL, 
Prandtl number NpR = V L / K L ,  

Brinkman number NBR = q*v%/,8kL62, 
Bond number NBO = 62g(PL -/%)Ig*, 

where Y is the kinematic viscosity and ay/aT is the rate of change of evaporation 
rate with interfacial temperature. 

Notice that both the Hickman number and the Marangoni number are func- 
tions of the thermal gradient -/3 in the boundary layer and, consequently, are 
extremely useful for defining the stability limit for the system. In  the absence 
of any variations in surface tension, the stability criteria are expressed in terms 
of the Hickman number, which is the ratio of the destabilizing forces of differen- 
tial vapour recoil and vapour viscosity to the stabilizing action of surface tension 
and thermal diffusivity. Likewise, in the absence of lateral variations in evapora- 
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tion rate, the stability criteria for the system are expressed in terms of the 
Marangoni number, which is the ratio of the destabilizing surface forces to the 
stabilizing action of viscosity and thermal diffusivity. 

It is important to recognize that the steady evaporation rate q", the heat of 
vaporization A,, and the steady liquid temperature gradient -/3 are not mutu- 
ally independent but rare interrelated through the equation for conservation 
of energy a t  the interface for the quiescent system [cf. (4)] .  Thus the Biot number, 
which represents the ratio of the rate of thermal energy transport at  the surface 
by evaporative cooling to the rate of transport by conduction, does not appear in 
the present analysis. 

5. General solution 

tions (30)-(34) is easily found to:be 
The general solution to (19),!(20) and (23a,  b )  which satisfies boundary condi- 

W ,  = Alle-a~+A12exp ( -rV6) ,  

W ,  = Az1eag+Az2exp (rL6) ,  
TL = A31eq6 -tA32 exp [(NRE NPR- !?I 61 + A21eorg/(aNRE NPR) 

+A22exp (rL6)/[rLNRE(NPR- l)1 for 6 2 - 
TL = A33eqc for 6 < - 1, 

where rv = +[ -N,EN,+ (N&Ni+ 4 ~ ~ ) * ] ,  
rL = &[NEE + (NLE + 4a2)*] 

and q = iHNRENpR + (N%,N%R + 4a2)*1. 

The relationships between the integration constants Aij may be determined 
from boundary conditions (24)-(27), (29) ,  (35)  and (36)  with the aid of (17) ,  (it%), 
(21)  and (22)  following Scriven & Sternling (1964). Substitution of the results 
into the shear-stress balance at  the interface [equation (2S)l  then yields the 
following characteristic equation relating the Hickman number to a and the 
other dimensionless groups at  the condition of neutral stationary instability: 
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FIGURE 2. Typical behaviour of the critical Hickman number with wavenumber. Region I 
is due to the moving-boundary mechanism, region I1 to vapour recoil and region I11 to 
viscous dissipation. - - - , NBR = 0. 

In  $ 6  the stability criteria for rapidly evaporating liquids in the absence of 
destabilizing surface-tension gradients will be discussed. In  $ 7  the coupling 
between the surface-tension mechanism and the vapour-recoil mechanism is 
explored and the theoretical predictions are interpreted in the light of the 
available experimental data. 

6. Instability in the absence of surface-tension gradients 
6. I. Wavenumber dependence 

In  the absence of local variations in surface tension, NA1, = 0 and the condition of 
marginal stability is expressed in terms of the Hickman number, denoted by N s .  
For this case four independent destabilizing mechanisms are potentially opera- 
tive in rapidly evaporating liquids. For disturbances of moderate wavelength 
(a -+ I), instabilities driven by differential vapour recoil and by the fluid-inertia 
mechanism are favoured; for disturbances of very small wavelength (a+ a), 
auto-amplification occurs via the viscous-dissipation mechanism; while for long- 
wavelength disturbances (a - lop3), instability may be produced by the moving- 
boundary mechanism. 

Because of the substantial differences in preferred wavelength for each mecha- 
nism, there is essentially no reinforcement of either the viscous-dissipation 
mechanism or the moving-boundary mechanism by differential vapour recoil or 
by local variations in fluid inertia. Thus criteria for instability induced by viscous 
dissipation or by the moving-boundary mechanism are easily deduced by limiting 
perspective to the appropriate range of wavenumbers. 

32 F L M  75 



4 98 H 

0" 

J. Palmer 

FIGURE 3. The dependence of the critical Hickman number on liquid-phase Reynolds 
number for the case in which the mechanism of differential vapour recoil dominates. 
N C R  = lo", NBO = 1, N P R  = 10, NJL = lo2, NBR = 0,  N M A  = 0. 

The exclusiveness of these two mechanisms is easily visualized with the aid of 
figure 2, which schematically illustrates the typical behaviour of N$ with wave- 
number. Because negative values of the Hickman number are physically un- 
realistic, only neutral-stability curves for positive N& are of interest. Region I 
is the region of instability due to the moving-boundary mechanism, region I1 
is that due to the combined effects of differential vapour recoil and fluid inertia, 
and region I11 is that  due to the viscous-dissipation mechanism, while the dashed 
line indicates the shape of the neutral-stability curve if the effect of viscous dissi- 
pation is eliminated by setting NBR = 0. Naturally the relative location of the 
minima and the asymptote a t  a+oo will depend on the values of the pertinent 
dimensionless groups. For instance, if viscous dissipation dominates the vapour- 
recoil mechanism, the value of N& as a-+ co will also be the minimum in the solid 
curve 11-111. Similarly, if the minimum in curve I is less than the minimum in 
curve 11-111, then the moving-boundary mechanism will initiate convective 
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instability (assuming that such long-wavelength disturbances can enter the 
system). 

In  contrast to the simplicity of isolating the viscous-dissipation and moving- 
boundary mechanisms, the destabilizing effect of differential vapour recoil in 
the absence of the effects of fluid inertia can be revealed only if the inertial terms 
of the equation of motion are ignored. Since little is gained by introducing this 
artificial restriction, the criteria for instability induced by differential vapour 
recoil will be presented with reinforcement by fluid inertia implicit in the results. 
The limiting case of N& equal to zero will then be explored to reveal the potential 
for instability via the fluid-inertia mechanism only. 

6.2. Instability induced by differential vapour recoil 

By far the most important mechanism for producing interfacial convection in 
rapidly evaporating liquids at  reduced pressure is differential vapour recoil. As 
will be demonstrated in 5 7, application of the present theory to the evaporation 
under vacuum of real fluids from a horizontal interface predicts instability via 
the vapour-recoil mechanism and qualitative experimental observations seem 
to bear this out. 

The criteria for instability induced by differential vapour recoil are presented 
in terms of the critical Hickman number N:, which is the minimum in curve I1 
of figure 2 for NBR = 0. The dependence of N$ on the liquid-phase Reynolds 
number NEE is illustrated in figure 3. n'otice that for each value of the liquid- 
to-vapour density ratio Np there is a value of the Reynolds number below which 
N$ is infinite. This critical value of NRE must be surpassed before instability 
by the vapour-recoil mechanism is possible. In  other words, the absolute recoil 
force must exceed a critical value before local variations in recoil force will be 
capable of producing an auto-amplifying disturbance. Beyond the critical value 
of NEE, however, the critical Hickman number remains essentially independent 
of Reynolds number until inertial forces become so great that they are capable 
of producing instability even in the absence of local variations in evaporation 
rate (as indicated by the sharp decrease in iV& to zero at high values of NEE). 
Notice also that, as the liquid-to-vapour density ratio is increased, the range of 
NRE in which instability induced by differential vapour recoil is possible broadens 
and that the value of N$ within this region decreases in proportion to the in- 
crease in Np. An increase in Np produces an increase in the velocity of the vapour 
leaving the surface, thereby increasing the shearing force on the liquid and 
decreasing system stability. 

Similarly shaped curves are shown in figure 4, in which the effect of surface 
flexibility on system stability is illustrated. As the crispation number NcR 
increases, the interface becomes more deformable and smaller evaporation rates 
(and thus smaller values of NRE) are required to produce instability induced by 
differential vapour recoil. The major effect of the crispation number for 
NCR is to shift the range of Reynolds numbera for which instability 
induced by differential vapour recoil is plausible. The crispation number has 
little influence on the actual stability criteria within this region. However, for 
NCR < this range of NEE begins to narrow drastically until, at NpR = lo-', 

32-2 
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N R E  

FIGURE 4. The effect of surface flexibility (in terms of NCR) on the critical Hickman 
number for instability induced by differential vapour recoil. NBO = 1, N ~ R  = 10, 
N ,  = los, N p  = loa, NBR = 0, NMA = 0. 

the propensity for instability induced by differential vapour recoil is essentially 
non-existent. This situation represents an interface which is sufficiently non- 
deformable to prevent any formation of interfacial craters by local variations in 
evaporation rate and the resultant shearing of the liquid by the vapour which is 
necessary for this mechanism to produce convection. 

The effect of Prandtl number on the curve of N& ws. NEE is identical to that 
of the crispation number. As NPR increases, convective heat transport becomes 
an increasingly more dominant destabilizing influence for maintaining lateral 
variations in interfacial temperature. Therefore the Reynolds number necessary 
for instability gradually decreases. As in the case of the crispation number, 
however, the Prandtl number has little effect on the value of N S  within the 
region of potential instability induced by differential vapour recoil. 

Crucial to the mechanism of differential vapour recoil is the existence of 
vapour viscosity. The effect of the liquid-to-vapour viscosity ratio on the sta- 
bility limit for the system is presented in figure 5. Because vapour viscosity a t  
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FIGURE 5 .  The dependence of the critical Hickman number on the liquid-to-vapour 
viscosity ratio a t  constant vapour-phase Reynolds number for the case of instability 
induced by differential vapour recoil. NCR = NBO = 1, NPR = 10, N ,  = lo8, 
hTBR = 0, N h f A  = 0. 

a fixed temperature and sub-atmospheric pressure is relatively independent of 
the particular fluid considered, curves of constant vapour-phase Reynolds 
number N,,NP are most useful in evaluating the effect of viscosity ratio on 
system stability. As expected, the critical Hickman number decreases in pro- 
portion to a decrease in NP in the region of potential instability by the vapour- 
recoil mechanism. Also, for a fixed value of NRE NP, there is a critical value of 
the liquid-to-vapour viscosity ratio above which vapour shearing of the inter- 
face is incapable of inducing convection in the fluid regardless of the value of 

The degree of gravitational stabilization of long-wavelength disturbances is 
proportional to the Bond number NBo. Consequently, as the Bond number is 
increased the critical wavenumber, corresponding to the minimum in the 
neutral-stability curve of N s  vs. a, is shifted to higher and higher wavenumbers 

N S .  
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(smaller and smaller wavelengths). For example, for typical values of all the 
other dimensionless groups (NCR = 10-5, NpR = 10, NEE = lo4, Np = 108, 
Np = lo2, NBR = 0 and NAf, = 0), the critical Hickman number occurs at  
a = 1.5 for NBo = 1.0 and at  CL = 0.2 for NBo = 10-2. Thus, for a boundary 
layer 1 mm thick, the critical convection cell size will be approximately 4 and 
30 mm for NBO = 1-0 and 10-2, respectively. The effect of the Bond number on 
the critical Hickman number is presented in figure 6. Because the vapour- 
recoil mechanism amplifies disturbances of moderate wavelength and because 
gravitational stabilization is most important for disturbances of long wave- 
length, the effect of low values of the Bond number on the criteria for instability 
is negligible. However, as the Bond number increases above 0.1, gravitational 
stabilization becomes increasingly important at  moderate wavelengths and the 
critical Hickman number begins to increase markedly. Notice also that, if the 
Reynolds number is sufficiently high ( > 10-2 in this case) and the Bond number 
is sufficiently low ( <  10-1)) instability due to fluctuations in. fluid inertia is 
possible. 

In  summary, the potential for instability induced by differential vapour 
recoil exists over a narrow range of Reynolds numbers whose span is determined 
by the values of the various dimensionless groups of the system. The value of 
the critical Hickman number within this range of Reynolds numbers is most 
sensitive to Np and Np and least sensitive to NCR, NBO and NpR. 

6.3. T h e  Jluid-inertia destabilizing mechanism 

In  the absence of any variation in evaporation rate, instability a t  moderate 
wavelengths is due entirely to local variations in fluid inertia which accompany 
local deflexions of the interface. For this special case the stability limit is the 
condition for which A, = 0 and is best described in terms of Nz, which proves to 
be a function of NBo, NRE and Np according to the following equation: 

where the inertial number Nz is defined by the equation 

Nz = N& NFR N,,(N, - I)  = 

Figure 7 illustrates the weak dependence of the critical inertial number on both 
the vapour-phase Reynolds number NR,Np and the viscosity ratio for the 
realistic situation Np > 10. Because of this weak dependence of NI on NIL for 
systems of practical interest, the general criteria for instability induced by local 
variations in fluid inertia may be presented on a single graph of critical inertial 
number usus. Bond number as shown in figure 8. Notice that for these circum- 
stances NI = cNk0, where the proportionality constant e is a weak function of 
the vapour-phase Reynolds number and varies between two and four. Conse- 
quently, for rapidly evaporating liquids instability is guaranteed if 
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FIGURE 6. The effect of Bond number on the potential for instability induced by differential 
vapour recoil. NCR = N P R  = 10, N ,  = lo8, N p  = lo2, NBR = 0,  N M A  = 0. 
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FIGUFLE 7 .  The effect of vapour-phase Reynolds number and liquid-to-vapour viscosity 
ratio on l,he criteria for instability induced by local variations in fluid inertia at the 
interface; NBO = 1. 
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FIGURE 8. The criteria for instability due to the fluid-inertia mechanism as a 
function of Bond number for N ,  > 10. 

At reduced pressures, this criterion is not difficult to attain. On the contrary, 
evaporation rates of 10-3 g/cm2 s are common, which means that a pressure of 

Torr is sufficiently low to produce instabilities induced by fluid inertia. 
Because the potential for instability induced by fluid inertia increases as the 

gravitational force normal to the interface decreases as reflected in (39), the 
system becomes more unstable as the interface is inclined to the horizontal. 
On the other hand, the stability limit for instability induced by differential 
vapour recoil is insensitive to a decrease in the gravity force normal to the 
interface for small values of NBo (cf. figure 6). Therefore, while differential vapour 
recoil is the significant mechanism for producing instabilities at horizontal 
interfaces, the fluid-inertia mechanism dominates in rapidly evaporating liquids 
on steeply inclined surfaces and, possibly, in nucleate boiling processes. 

6.4. Instability induced by viscous dissipation 

For disturbances of very small wavelength (a > lo3), the lateral variations in 
viscous dissipation that accompany local deflexions of the interface are capable 
of generating enough heat to sustain locally higher evaporation rates in surface 
craters and, therefore, to cause instability. As illustrated in figure 2, the curve 
of N& ws. a asymptotically approaches a limiting value a t  large a. This limit 
represents the critical Hickman number for instability induced by viscous 
dissipation. Thus the criteria for instability induced by the viscous-dissipation 
mechanism are easily determined by taking the limit of (37) as a: approaches 
infinity. The result is 

[x%1c4+03 = NPR(l + q & ) / [ 4 f l B R ( N p +  '1 ( x p + N p ) l ,  (40) 
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or in modified form 

where $5 is a modified Hickman number defined by 

For vapour-liquid systems at low pressures N i l ,  N, /Np and are much less 
than unity. Therefore, the criterion for instability due to viscous dissipation 
reduces to 3% > i. Because Z% is proportional to  pv3, the criterion for iiista- 
bility may be exceeded for vaporization a t  reduced pressure. In  fact, for a 
typical value of 7" of 2 x 10-3 g/cm2 s, a vacuum of Torr is sufficient to 
produce instability induced by viscous dissipation in most circumstances. 

Equation (42) reveals the insignificance of the thermal gradient and the 
boundary-layer thickness for instability induced by the viscous-dissipation 
mechanism. Thus it is expected that the viscous-dissipation destabilizing 
mechanism will be most important in systems with very thin thermal boundary 
layers, possibly resulting from rapid agitation in the bulk phase, for which the 
criteria for instability induced by differential vapour recoil are not exceeded. 

6.5. The moving-boundary mechanism 

For disturbances of very long wavelength (a -+ 0), auto-amplification may occur 
owing to the moving-boundary mechanism described by Miller (1973). Although 
the minimum in the curve of N& vs. a in region I of figure 2 does not occur at  
a = 0, the neutral-stability curve is extremely flat in the region 0 < a < 
within which the minimum value of N; falls. Therefore, the limiting value of 
N g  as a+O is generally within 1% of the minimum criterion for instability 
induced by the moving-boundary mechanism. As the wavenumber approaches 
zero, 

~ N ~ E N P R N c R N ~  - 1 +NBRNkE(N;- 1) -'. 
(43) 

The second term on the right-hand side of (43) represents the destabilizing effect 
of surface flexibility while the third term represents the stabilizing effect of 
interfacial cooling by vaporization plus conversion of heat to  kinetic energy of 
the emerging vapour. For most circumstances, interconversion of thermal 
energy to kinetic energy is unimportant and, therefore, the effect of the term 
containing NBR may be ignored. For such situations stability is guaranteed if 
NRENpR is greater than unity. This simple 'rule of thumb' proves to be a con- 
venient indicator of whether the moving-boundary mechanism is capable of 
producing an instability in a particular system of interest. 

If NBR is assumed equal to zero and (43) is rewritten in terms of system pro- 
perties as 

~ & N $ R N & N p -  1) = (1+ NBO NRENPR I N,"&I,+, 
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the stability limit for instability via the moving-boundary mechanism is seen 
to be independent of liquid viscosity. This is because the moving-boundary 
mechanism produces instabilities in the form of interfacial wave amplification 
rather than as interfacial convection. 

The above result differs from that of Miller (1973) in that it allows for the 
stabilizing effect of the dependence of evaporation rate on local interfacial 
temperature. Because Miller assumed that the evaporation rate can vary while 
the surface temperature remains constant, his stability criteria are based on the 
assumption that NH is infinite. In  reality, however, this is never the case. 
Therefore his results represent a lower bound on the criteria for instability pre- 
dicted from (44). Nevertheless, his conclusion that instability can exist only for 
disturbances of (impermissibly) long wavelength remains unchanged. In  addi- 
tion, computations based on physical properties of real systems indicate that 
instability due to differential vapour recoil, fluid inertia or viscous dissipation 
is far more likely than that due to the moving-boundary mechanism. 

7. General solution including the effect of surface-tension gradients 
Before exploring the degree of interaction between the preceding destabilizing 

mechanisms and the surface-tension destabilizing mechanism, the effect of the 
various dimensionless groups on the critical Marangoni number N&A in the 
absence of local variations in evaporation rate must be assessed by setting 
NH = 0 in (37). The results indicate that NZfA is highly insensitive to Np13, NcR, 
NBo, lV/, Np and NBR for realistic values of these dimensionless groups while 
the major effect of the Reyfiolds number is to shift the critical wavenumber to 
higher and higher values as NRE increases, as shown in table 1. 

In  53 it was explained .that local variations in evaporation rate diminish 
lateral variations in surface temperature to stabilize instability driven by 
surface tension. This stabilizing effect may be isolated from the destabilizing 
effect of differential vapour recoil by computing the critical Marangoni number 
NtfA as a function of NH/N2%fA under conditions for which instability due to 
vapour recoil is impossible. The result of these calculations is presented in 
figure 9.  Notice that, as the effect of local variations in evaporation rate is in- 
creased relative to that of surface-tension gradients, the critical Marangoni 
number increases sharply and ultimately approaches infinity. This dramatic 
increase in stability is accompanied by only a small decrease in preferred distur- 
bance wavelength, which supports the contention that the significant stabilizing 
effect is due to local interfacial cooling and not to a change in the stabilizing 
influence of fluid viscosity with wavenumber. 

The effect of surface-tension gradients on instability produced by the viscous- 
dissipation, fluid-inertia and moving-boundary mechanisms is negligible. How- 
ever, because of their similarity in requiring interfacial shearing of the liquid to 
induce convection and amplify disturbances, the interaction between the 
surface-tension mechanism and the mechanism of differential vapour recoil can 
be considerable. To expose this interaction between these two destabilizing 
mechanisms, the stability criteria for systems in which both mechanisms are 
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NRE NMA* a 

0 
10-5 
10-4 
10-3 
10-2 

4.010 
4.107 
4.253 
4.747 
6.604 

0 
0.0063 
0.020 
0.063 
0.20 

TABLE 1. The effect of Reynolds number on the criteria for instability driven by 
surface tension. N P R  = 10, N ,  = lo3, N ,  = lo2, NBO = 1, N C R  = 10-5, 
NBR = 0. 

NH/NMA 
FIGURE 9. The effect of Hicliman number on the criteria for instability driven by surface 
tension under conditions for which all other destabilizing mechanisms are inoperative. 
N ~ R  = 10, N C R  = NBO = 1, N, = lo2, NRE = lop4, NBR = 0. 

operative are presented a.s a normalized critical Marangoni number NafA/N&A vs. 
a normalized critical Hickman number N,/Ng. Figures lO(a) and (b)  show the 
normalized critical Marangoni number vs. the normalized critical Hickman 
number for the range of Np in which the destabilizing mechanism of differential 
vapour recoil is operative for Bond numbers of 1.0 and 

Unlike the case of instability driven by the combined effects of surface tension 
and buoyancy investigated by Nield (1964), there is surprisingly little coupling 
between the destabilizing mechanism of differential vapour recoil and that due 
to gradients in surface tension. In fact, over most of the range of N, for which 
both mechanisms are operative, there is actually an increase in system stability 
followed by a decrease as the Hickman number is increased. Thus, as the evapora- 
tion rate is increased (to increase the effect of vapour recoil) the system may first 
exhibit convection driven by surface tension, then become stable, and finally 
become unstable again owing to the effect of differential vapour recoil. This 

respectively. 
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FIGURE 10. The normalized critical Marangoni number vs. the normalized critical Hickman 
number for (a) NBO = 1 and (b )  NBO = lo-'. NPR = 10, NCR = 10-4, N p  = 102, 
ivRE = 10-4, NBR = 0. 
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FIGURE 11. The effect of Reynolds number on the coupling between the destabilizing 
mechanisms of differential vapour recoil and surface tension. NBO = 1, NPR = 10, 
NcR = 10-4, N p  = 102, N ,  = 3 x lo', NBR = 0. 

intermediate region of stability is caused by the stabilizing effect of evaporative 
cooling on instability driven by surface tension and is consistent with experi- 
mental observations, which verify that the interface of the rapidly evaporating 
liquid is noticeably calm just before the onset of instability at low pressure 
( -  0.1 Torr). 

The lack of co-operation between these destabilizing mechanisms coincides 
with a sizeable difference in the preferred wavenumber for each mechanism. 
The critical wavenumber for instability driven by surface tension at NRE = 10-4 
is 0.02, while that for instability induced by differential vapour recoil is approxi- 
mately 1.0 for NBo = 1-0 and about 0.25 for NBo = It is evident from a 
comparison of figures lO(a) and (b) that the coupling between these mechanisms 
at a fixed value of Np becomes much greater as the preferred wavenumber for 
vapour-recoil instability is reduced through a reduction in Bond number, A 
similar effect is illustrated in figure 11, which shows an increase in coupling 
between these mechanisms as the Reynolds number increases. Table 1 shows 
that an increase in NRE increases the preferred wavenumber for instability 
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FIGURE 12. Theoretical stability predictions (solid curve) and the experimental trajectory 
(dashed curve) for steady rapid evaporation of polyphenyl ether a t  reduced pressures; 

v* = g/cmz s and d = 0.1 mm. 

driven by surface tension and thereby decreases the degree of competition 
between the mechanisms. 

Although considerable experimental evidence has been compiled by Hickman 
and myself with regard to trends in the stability behaviour of rapidly evaporating 
liquids under vacuum, no data exist which precisely identify the criteria for 
instability in such systems. Nevertheless, the experimental consequences of the 
theoretical predictionsucan be explored by considering an experiment similar to 
those of Hickman (1972) in which polyphenyl ether is evaporated a t  a steady 
rate of 10-4 g/cm2 s, sustained by a thermal gradient of 2 "C/cm across a thermal 
boundary layer 0.1 mm thick. As the pressure above the liquid is gradually 
reduced, the liquid-to-vapour density ratio increases, significantly reducing the 
stability limit for the system and increasing the experimental value of the 
Hickman number. All the other dimensionless groups describing the system are 
insensitive to pressure and need be computed only once : NPR = 40, NcR = 2 x 1 
N,, = 5 x 10-3, Np = 80, NRE = 2-5 x lop5, NBR = 7 x lo-' and N,,, = 4. 

The theoretical criteria for instability induced by differential vapour recoil 
(solid line) and the associated experimental curve (dashed line) for the above 
conditions are shown in figure 12. On the basis of these computations, instability 
should occur at  a pressure of about 2 x 10-3 Torr, which is in qualitative agree- 
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ment with experimental observations. For the above conditions, the critical 
value of NH for the viscous-dissipation mechanism may be computed from (40), 
and is found to be three orders of magnitude greater than the critical NH for 
the dominant vapour-recoil mechanism. Similarly, it  is easily shown that a t  
such low Reynolds numbers the moving-boundary mechanism is inoperative. 

8. Conclusion 
The linear stability analysis of a fluid-fluid system undergoing phase trans- 

formation reveals that the observed instability during vaporization at  reduced 
pressure can indeed be predicted theoretically. Four distinct destabilizing 
mechanisms are delineated in the analysis in addition to the familiar surface- 
tension mechanism. However, computations indicate that under usual circum- 
stances instability is dominated by the destabilizing mechanism of differential 
vapour recoil. Of particular significance is the competition that exists between 
the destabilizing surface-tension and vapour-recoil mechanisms to determine the 
disturbance wavelength which will be most rapidly amplified. The result is 
that even a pure liquid may proceed from a region of instability driven by 
surface tension to one exhibiting a torpid (stable) interface to a state in which 
convection is driven by differential vapour recoil as the evaporation rate is 
continually increased. 

A future paper will be presented to explore the effects of non-volatile surface- 
active agents on system stability in an attempt to unveil the cause and nature 
of the schizoid interface. 
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FIGUI~E 1. Tlie schizoid surface of a rapidly cvaporating mineral oil: working area fore- 
ground, t,orpid area hrliirtd. (Courtesy of K. Hickman.) 

PALMER (Fuci7q p .  512) 


